Human Settlements and Climate Change Mitigation:

Key findings from the latest IPCC WG3 report

Coordinating Lead Author, WGIII Associate Professor, Asian Institute of Technology

INTERGOVERNMENTAL PARTE ON Climate Ch **CLIMATE CHANGE 2014** Mitigation of Climate Change

Media Workshop, 17th August 2015 IPCC Fifth Assessment Report Outreach Event 17-18 August 2015, United Nations Conference Centre, Bangkok, Thailand

Key messages

- Our ability to deep-cut global GHG depends, to a large extent, on what kind of cities and towns we will build and how urban dwellers embrace carbon mitigation
- Cities affect GHG emission 'within' as well as 'outside' its physical boundaries; consumption and infrastructure choice in cities are critical for global carbon mitigation
- Existing low carbon city initiatives are mostly focused on sectoral, end-of-pipe and short-term technical solutions; their level of implementation, achievements and collective impacts are yet not clear
- Next 2-3 decade is critical- A large window of mitigation opportunities lie in guiding new urbanization in next 2-3 decades
- Large opportunities lie in systemic and integrated mitigation solutions- beyond sectoral considerations
- Considerations to co-benefits and best practices smoothens the entry points to city climate change mitigation agenda

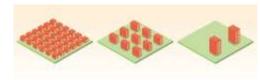
INTERGOVERNMENTAL PANEL ON Climate ch

Urbanization is associated with increases in income and higher urban incomes correlated with higher energy and GHG emissions

- > 71-76% of energy-related global CO2 emissions are from energy use in cities
- City consumption driven upstream emissions makes cities even more important
- Emissions and contribution of sources vary greatly across cities
 direct comparison often does not tell us much cities are
 different from nation states

No single factor explains the large variations in city per-capita city emissions within and across countries

- ➤ Influenced by physical, economic and social drivers specific to each city ¬No clear answer yet on what cluster of drivers provides a specific carbon outcome of cities
- ➤ Individual technology drivers and activities are relatively better understood- but systemic factors and integrated effects of drivers are less understood
- ➤ Spatial drivers are important- especially the collective influence of different density, land-use mix, connectivity and accessibility

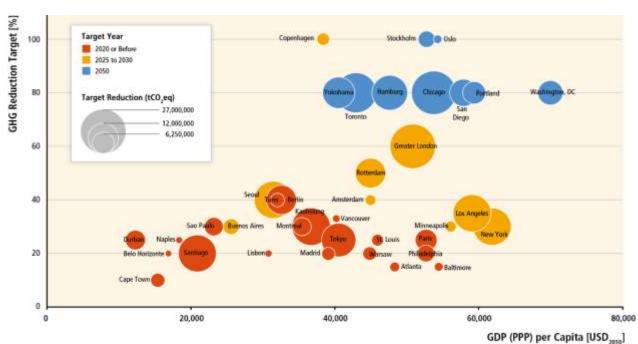


Higher density

Mixed land-use

Better connectivity

Better Accessibility to people and places



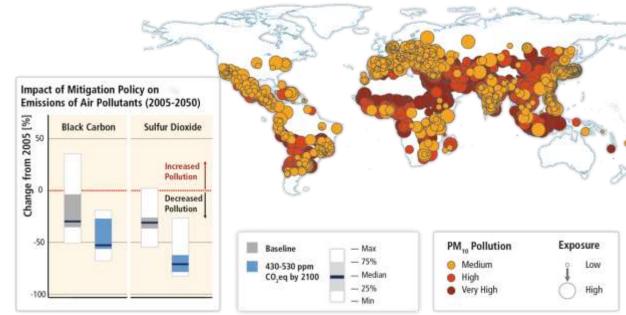
Density is necessary but not sufficient condition for lowering urban emissions

Thousands of cities are undertaking Climate **Action Plans and mitigation commitments**

- Little systematic assessment on their level of implementation & the extent to which reduction targets are being achieved
- Focused largely on energy efficiency
- Limited consideration to land-use planning strategies and other cross-sectoral, cross boundary measures

Yet, their aggregate impact on urban emissions is uncertain

In urban decisions making, policy leverages do not often match with largest mitigation opportunities in cities


Stylized Hierarchy of Urban Energy/GHG Drivers and Policy Leverages

Systemic changes have more mitigation opportunities but hindered by policy fragmentation

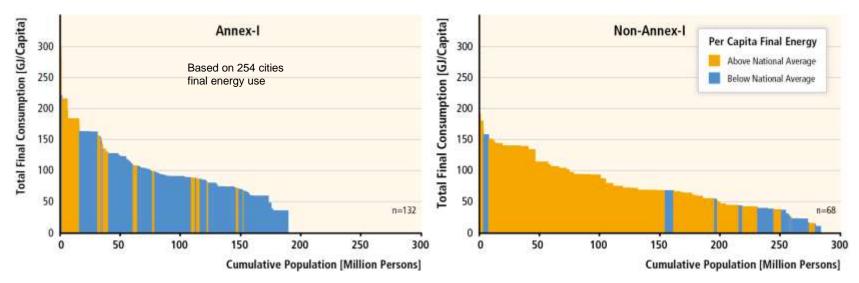
Successful implementation of urban-scale climate change mitigation strategies can provide health, economic and air quality co-benefits

 Action on urbanscale mitigation often depends on the ability to relate climate change mitigation efforts to local co-benefits

Mitigation measures	Effect on additional objectives/concerns		
	Economic	Social (including health)	Environmental
Compact development and infrastructure	 ↑ Innovation and productivity¹ ↑ Higher rents & residential property values² ↑ Efficient resource use and delivery⁵ 	↑ Health from physical activity ³	↑ Preservation of open space ⁴
Increased accessibility	↑ Commute savings ⁶	 ↑ Health from increased physical activity³ ↑ Social interaction & mental health⁷ 	↑ Air quality and reduced ecosystem/health impacts ⁸
Mixed land use	↑ Commute savings ⁶ ↑↑ Higher rents & residential property values ²	 ↑ Health from increased physical activity³ Social interaction and mental ↑ health⁷ 	↑ Air quality and reduced ecosystem/health impacts ⁸

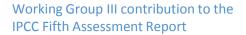
Global urbanization trends

Urban land could expand up-to 3 time in 2000-30 55% of global land in 2030 is expected to be developed in 2000-30

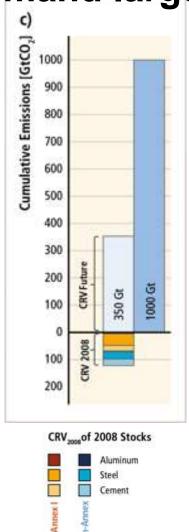


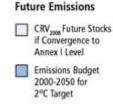
- Two sources of emissions: Due to materials needs (stock); usage of infrastructure (flow)
- Problem of "Lock-in": Long life of infrastructure and built environment locks energy and emissions pathways

INTERGOVERNMENTAL PANEL ON Climate ch


Implications of urbanization

- ➤Urbanization-income nexus → higher urban incomes correlated with higher energy and GHG emissions
- ➤ Bottom up analyses show that Cities in non-Annex I countries have, generally, higher per capita final energy use and CO2 emissions than respective national averages majority of new urbanization will be in non-Annex





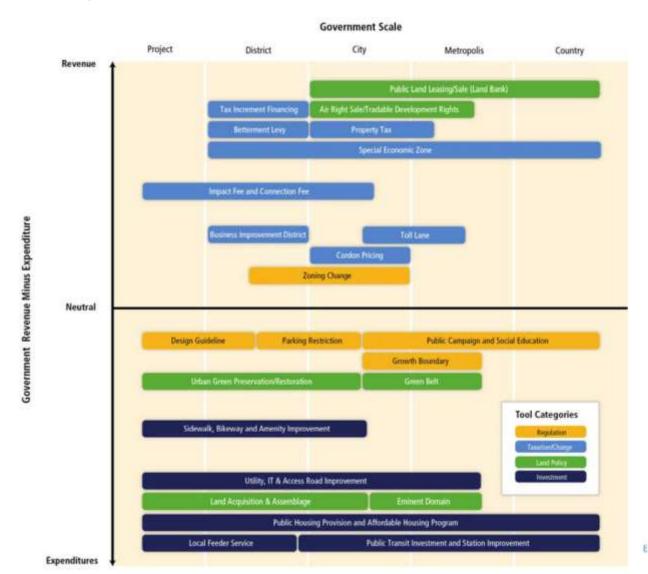
Future infrastructure is rapidly urbanizing regions demand large emissions

- The existing infrastructure stock of the average Annex I resident (2008) is
 - @ 3 times that of the world average
 - @ 5 times higher than that of the average non-Annex I resident
- If non-Annex I countries catch up with Annex I for per capita infrastructure stock → will result in significant future emissions
- → Amount to 1/3rd of total emission budget that we have left in 2000-2050 to stay under 2°C

'Governance paradox' and need for a comprehensive approach

- 'Systemic changes' have large mitigation opportunities but hindered by current patterns of urban governance, policy leverages and persisting policy fragmentation
- Governance and institutional capacity are scale and income dependent, i.e., tend to be weaker in smaller scale cities and in low income/revenue settings
 - However, the bulk of urban growth momentum is expected to unfold in small- to medium-size cities in non-Annex-I countries
 - The largest opportunities for GHG emission reduction might be precisely in urban areas where governance and institutional capacities to address them are weakest
- The feasibility of spatial planning instruments for climate change mitigation is highly dependent on a city's financial and governance capability
- For designing and implementing climate policies effectively, institutional arrangements, governance mechanisms, and financial resources all should be aligned with the goals of reducing urban GHG emissions

Key opportunities


- ➤ Guiding new urbanization in next 2-3 decades → large opportunity but fast closing too
- ➤ Going beyond Incremental change → to transformative change
 - > Better climate change action plans and implementations
 - > Deploying far-reaching market-based solutions coupled with planning, such as pricing
 - Systemic and integrated solutions
- ➤ Overcoming the governance limitations and policy fragmentations
- ➤ Smoothening the entry points to climate agenda: Demonstrating the best practice technologies and local co-benefits of urban-scale mitigation actions
- Overcoming the size, governance and income dependency of mitigation solutions, possibly through capacity building

For further information

www.mitigation2014.org

The feasibility of spatial planning instruments for climate change mitigation is highly dependent on a city's financial and governance capability

Sources: Bahl and Linn (1998); Bhatt (2011); Cervero (2004); Deng (2005); Fekade (2000); Rogers (1999); Hong and Needham (2007); Peterson (2009); Peyroux (2012); Sandroni (2010); Suzuki et al. (2013); Urban LandMark (2012); U.S. EPA (2013); Weitz (2003).

Mitigation solutions are often scale, governance and income dependent

- The largest mitigation opportunities with respect to human settlements are in rapidly urbanizing areas with
 - Small and mid-size cities
 - Developing and economical growing regions
 - Where infrastructure is being built and yet not locked-in

But these are often the places where limited financial and institutional capacities persist

 The feasibility of spatial planning instruments for climate change mitigation is highly dependent on a city's financial and governance capability

