

Impacts of global warming: Where do we want to go?

At 1.5°C compared to 2°C:

- Less impacts from extreme weather where people live
- By 2100, global mean sea level rise will be around 10 cm lower but will continue to rise for centuries
- 10 million fewer people exposed to risk of rising seas (...less coastal ecosystems exposed)

ERNMENTAL PANEL ON CLIMATE CHAN

People exposed to Sea Level Rise, assuming there is no adaptation or protection

Upper values correspond to the 50° percentile; values below correspond to the 5° to 95° percentile range

Where do we want to go?

At 1.5°C compared to 2°C:

- Lower impact on biodiversity and species
- Smaller reductions in yields of maize, rice, wheat crop yields
- Global population exposed to water shortages is up to 50% less (also less water shortages for ecosystems)

Andre Seale / Aurora Photos

SPM 1.5°C: Terrestrial biodiversity

- Of 105,000 species studied, 6% of insects, 8% of plants and 4% of vertebrates are projected to lose over half of their climatically determined geographic range for global warming of 1.5°C, half of the respective numbers at 2°C.
- Approximately 4% (interquartile range 2–7%) of the global land area is projected to undergo a transformation of ecosystems from one type to another at 1°C of global warming, compared with 13% (interquartile range 8–20%) at 2°C. This indicates that the area at risk is projected to be approximately 50% lower at 1.5°C compared to 2°C.

Terrestrial biodiversity

P. Smith et al. 2018

Where do we want to go? At 1.5°C compared to 2°C:

Lower impacts on biodiversity and species

Terrestrial Meta-analysis as in SR1.5

ILLUSTRATIVE EXAMPLE

Where do we want to go?

At 1.5°C compared to 2°C:

- Up to several hundred million fewer people exposed to climate-related risk and susceptible to poverty by 2050
- Lower risk to fisheries & the livelihoods that depend on them

Natalie Behring / Aurora Photos

Where do we want to go?

At 1.5°C compared to 2°C:

- Disproportionately high risk for Arctic, dryland regions, small island developing states and least developed countries
- Lower risks for health, livelihoods, food security, water supply, human security and economic growth
- A wide range of adaptation options can reduce climate risks; less adaptation needs at 1.5°C

Jason Florio / Aurora Photos

Where do we want to go? At 1.5°C compared to 2°C:

 Reduced risk to human health – lower heatrelated morbidity and mortality

ILLUSTRATIVE EXAMPLE, TO BE ASSESSED IN AR6

Confidence level : M, medium; H, high; VH; very high

change.

...less loss and damage at 1.5°C

Confidence level : M, medium; H, high; VH; very high

DBSERVATIONS

0.8 to 1.0°C

2016

Vulnerable ecosystem identified in AR5 and SR1.5 Warm water coral reefs under various pressures

Assessing risk of global warming

Even in a 1.5°C warmer world.... high risk of losing 70 to 90% of coral reefs and their services to humankind; ... even higher losses at 2°C

driven by local invasions and losses

ILLUSTRATIVE EXAMPLE

Vulnerable ecosystems identified in AR5 and SR1.5:

Arctic summer sea ice systems

RCP 2.6 ambitious mitigation

1.5°C

RCP 8.5 business as usual

Northern Hemisphere September sea ice extent (average 2081-2100)

1 in 100 years ice-free at 1.5°C

- CMIP5 multi-model average 1986-2005
 - CMIP5 multi-model average 2081-2100
 - CMIP5 subset average 1986–2005
 CMIP5 subset average 2081–2100

> 1 in 10
years icefree at
2°C

Ambitious emissions reductions have...

- Co-benefits for
- Human health
- **Reduced competition** for land (BECCS)

RNMENTAL PANEL ON CLIMATE Chan

- Food security for humankind
- Ecosystem restoration and carbon storage (soils and biomass)
- Biodiversity conservation

Peter Essick / Aurora Photos

For minimizing impacts and associated risks....

Half a degree...,

...every bit of warming matters

Each year matters

Each choice matters

Ashley Cooper/ Aurora Photos