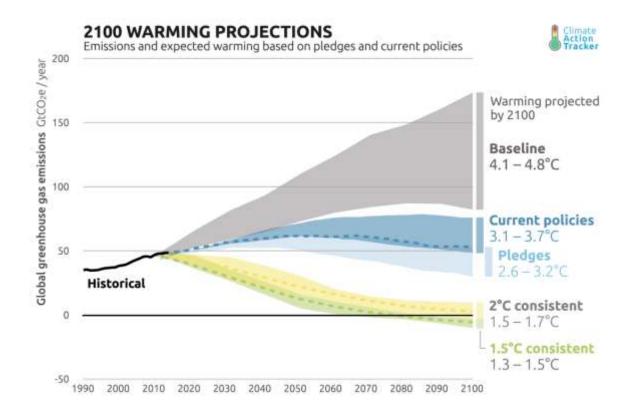


Avoiding impacts and impacts avoided

New frontiers for climate impact research


Dr. Carl-Friedrich Schleussner Climate Analytics

Objectives of climate impact science after Paris

Inform Mitigation:

- Impacts implied by countries NDCs
- Impacts avoided by increasing mitigation ambition to achieve Paris Agreement goals

Objectives of climate impact science after Paris

Inform Mitigation:

- Impacts implied by countries NDCs
- Impacts avoided by increasing mitigation ambition to achieve Paris Agreement goals

Adaptation:

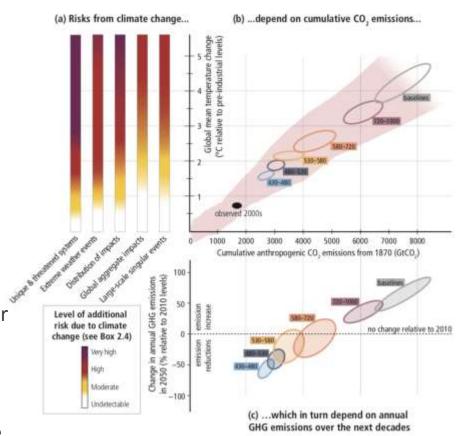
- Implementation is an imperative under the international climate regime going forward
- Requires robust science to inform adaptation

Climate impact science to inform mitigation action

Objective:

 Inform about future impacts and risks from climate change and impacts avoided for different levels of mitigation ambition

Time horizon:

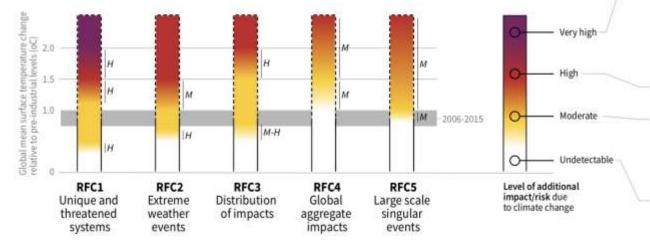

- Commonly until 2100
- Ranges from pre-industrial to millennia

Context and Scale:

- Global to regional
- Linked to concentration scenarios or warming levels

Sustainable development context:

 Indirect through scenarios of future socio-economic developments (SSPs) and SDG linkages



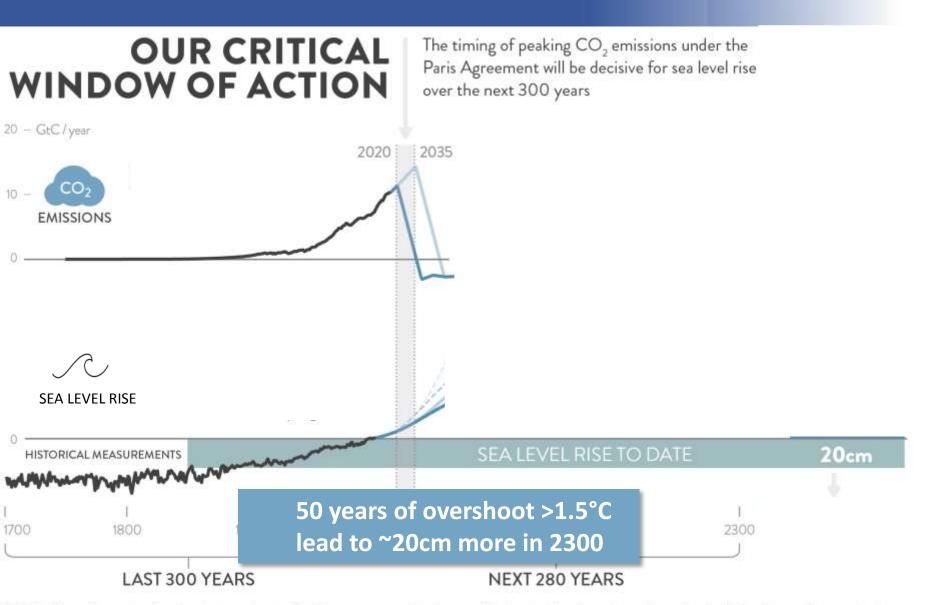
Differentiate between 0.5°C warming increments

Five Reasons For Concern (RFCs) illustrate the impacts and risks of different levels of global warming for people, economies and ecosystems across sectors and regions.

Impacts and risks associated with the Reasons for Concern (RFCs)

Purple indicates very high risks of severe impacts/risks and the presence of significant irreversibility or the persistence of climate-related hazards, combined with limited ability to adapt due to the nature of the hazard or impacts/risks.

Red indicates severe and widespread impacts/risks. **Yellow** indicates that


impacts/risks are detectable and attributable to climate change with at least medium confidence.

White indicates that no impacts are detectable and attributable to climate change.

- SR1.5 has shown the significance of 0.5°C differences
- New research questions include e.g. impacts of overshoots

The sea level rise example

SOURCE

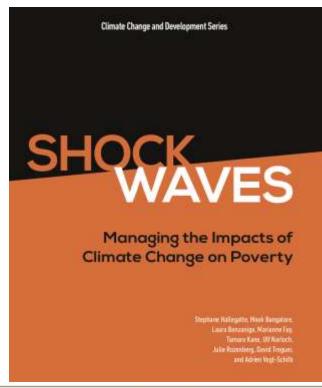
Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action - Mengel et. al. 2018 - Nature Communications

Climate impact science/services for adaptation

Objective:

Inform concrete (adaptation) action today.

Time horizon:


Present day up to mid-century

Context and Scale:

- Local to national (bottom-up)
- Implementation and stakeholder focus
- Bound by local constraints

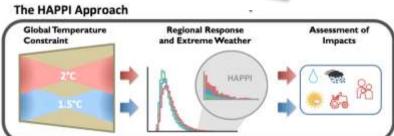
Sustainable development context:

- Direct, successful adaptation action needs to be inherently linked to a sustainable development context
- Link to climate finance

Policy choices Prosperity scenario	Climate change scenario				
	No climate change Number of people in extreme poverty by 2030	Low-impact scenario		High-impact scenario	
		Additional number of people in extreme poverty due to climate change by 2030			
		+3 million		+16 million	
		Minimum +3 million	Maximum +6 million	Minimum +16-million	Maximum +25 million
Poverty scenario	900 million	+35 million		+122 million	
		Minimum -25 million	Muximum +97 million	Minimum +33 million	Maximum +165 million

Synergies

Climate impact assessments across space and time decisive to:


- Inform choice of adaptation measure (incremental vs. transformational)
- Avoid maladaptation
- Assess limits to adaptation and Loss and Damage

The 1.5°C special report

- Under current trends reached around ~2040s.
- Assesses innovative modelling approaches like the "Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI)" model

intercomparison project

https://climateanalytics.org/briefings/15c-key-facts/

Thank you!

