

The 1.5°C Transition: Challenges and Opportunities

Elmar Kriegler

IPCC SR1.5 Chapter 2 Side Event, COP24, Katowice 12 December 2018

Systems transitions in 1.5°C pathways

Limiting warming to 1.5°C would require rapid, farreaching changes on an unprecedented scale:

- Deep emissions cuts in all sectors and regions
- → A range of low carbon technologies
- → Behavioural changes
- Sustainable land management
- Carbon dioxide removal from the atmosphere
- Investment into system transitions & low carbon options

with a systems perspective and global coordination.

1.5°C pathways can put different emphasis on demand- vs. supply-side vs. CO2 removal

SR1.5 Fig. SPM3b

Energy system transitions Global primary energy

- Fossil fuel eductions vary with fuel type: coal the most, gas the least
- Limited amount of fossil CCS (predominantly gas)
- Solar, wind, bionenergy with CCS gain the most

SR1.5 Chap. 2 Fig. 2.15

Electricity system transitions Full decarbonisation by mid-century

- Gas supplies 3-11% of electricity (depend. CCS)
- Coal is phased out as source for electricity (0-2%)
- Renewables supply 70-85% of electricity

SR1.5 Chap. 2 Fig. 2.16

Systems transitions: Energy use in industry, transport, buildings

CO₂ emissions from industry in 2050:

75-90% reduced from 2010 levels

└ Compared to 50-80% for 2°C

Share of low-emission final energy in transport:

• 35-65% in 2050

└ Compared to 25-45% for 2°C

Electricity share of final energy in buildings:

• 55-75% in 2050

└ Compared to 50-70% for 2°C

SR1.5 Chap. 2 Fig. 2.20

Energy investments needed in 1.5-2°C pathways

Systems transitions Carbon Dioxide Removal (CDR)

All 1.5°C pathways use CDR in the range of 100-1000 GtCO₂ over the 21st century, to

- Compensate residual emissions of CO₂
- Achieve net negative CO₂ emissions for overshoot

BECCS and AFOLU CDR are predominant options in 1.5°C pathways

- BECCS: 0-1 GtCO₂/yr in 2030, 0-8 GtCO₂/yr in 2050 Assessed max. 2050 potential: 5 GtCO₂/yr
- AFOLU: 0-5 GtCO₂/yr in 2030, 1-11 GtCO₂/yr in 2050 Assessed max. 2050 potential: 3.6 GtCO₂/yr

Gerhard Zwerger-Schoner / Aurora Photos

INTERGOVERNMENTAL PANEL ON Climate change

Range of CDR measures

Portfolio of CDR measures would limit individual deployment and therefore sustainability issues for each single measure

- Soil carbon enhancement, biochar and land restoration
- Afforestation
- BECCS using energy crops
- BECCS using algae
- Direct Air Capture + Geological storage (DACCS)
- Enhanced Weathering
- Artificial ocean alkalinization
- Carbon capture and usage (e.g. carbon fiber / wood)

Terrestrial storage Early deployment

Geological storage Medium-Long term

Mineralisation Medium-Long term

System transitions: Land-use changes

Need for sustainable land management in 1.5°C pathways

Linkages between 1.5°C pathways and sustainable development (the linkages do not show costs and benefits of mitigation)

Length shows strength of connection

The overall size of the coloured bars depict the relative for synergies and trade-offs between the sectoral mitigation options and the SDGs.

The shades depict the level of confidence of the assessed potential for Trade-offs/Synergies.

SR1.5 Fig. SPM4

WMO

https://data.ene.iiasa.ac.at /iamc-1.5c-explorer

System transitions - general trends

- I. Improve energy efficiency Limiting final energy demand in 2050 to +20 to -10% rel. to 2010 levels
- II. Decarbonize the power sector (carbon-intensity of electricity about 0 or negative in 2050)
- III. Electrify energy end use (mobility, buildings, industry)
- IV. Subs. residual fossil fuels with low-carbon options (e.g. gas for heating, petrol for driving with bio-based fuels)
- Different roles for different type of fuels

Peter Essick / Aurora Photos

Wide range of CCS that is deployed across 1.5-2°C pathways: Fossil CCS

- Smaller use of fossil CCS in energy supply systems in 1.5°C pathways compared to 2°C pathways
- Ilustrative pathways: No coal, < 25 EJ gas
- Smaller use of fossil CCS in low overshoot pathways
- Declining use of CCS over time

Wide range of CCS that is deployed across 1.5-2°C pathways: BECCS

- Dominant source of CCS in 1.5°C pathways
- Larger use of BECCS in overshoot pathways
- Similar use of BECCS in low overshoot 1.5°C and lower 2°C pathways

Wide range of CCS that is deployed across 1.5-2°C pathways: Total CO₂ stored

Marginal abatement cost in 1.5°C pathways

Cost discounted at 5%/yr to 2020.

1000