Special Report on Climate Change and Land

Current estimates of land-related global emissions and mitigation potentials

Agricultural landscape between Ankara and Hattusha, Anatolia, Turkey (40°00' N – 33°35' E) ©Yann Arthus-Bertrand | www.yannarthusbertrand.org | www.goodplanet.org

www.ipcc.ch/report/SRCCL

Louis Verchot www.ipcc.ch/re International Center Tropical Agriculture Madrid, 3 December 2019

INTERGOVERNMENTAL PANEL ON Climate change

		Direct Anthropogenic						Indirect					
Gas	Units	Net anthro Agriculture, I	opogenic emiss Forestry, and O (AFOLU)	ions due to ther Land Use	Non-AFOLU anthropogenic GHG emissions ⁶	Total net anthropogenic emissions (AFOLU + non-AFOLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	Natura land ir envir c	respo to hum iduced onme hange ⁷	nse of nan- ntal	Net atmo flux f la	land spho rom nds	l – ere all
Panel 1: Contr	ibution of A	FOLU											
		FOLU	Agriculture	Total									
		А	В	C = A + B	D	E = C + D	F = (C/E) *100		G		А	+ G	
co ²													
CO_2	Gt CO ₂ y ⁻¹	5.2 ± 2.6	No data ¹¹	5.2 ± 2.6	33.9 ± 1.8	39.1 ± 3.2	13%	-11.2	±	2.6	-6.0	±	3.7
C IL 3.8	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ± 109							
CH ₄ -7	Gt CO ₂ e y ⁻¹	0.5 ± 0.2	4.0 ± 1.2	4.5 ± 1.2	5.6 ± 2.8	10.1 ± 3.1	44%						
N 0 ^{3,8}	Mt N ₂ O y ⁻¹	0.3 ± 0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ± 2.7							
N ₂ O ^{3,8}	Gt CO ₂ e y ⁻¹	0.09 ± 0.03	2.2 ± 0.7	2.3 ± 0.7	0.5 ± 0.3	2.8 ± 0.7	81%						
Total (GHG)	Gt CO ₂ e y ⁻¹	5.8 ± 2.6	6.2 ± 1.4	12.0 ± 2.9	40.0 ± 3.4	52.0 ± 4.5	23%						

		Direct Anthropogenic						Indirect				
Gas	Units	Net anthro Agriculture, F	opogenic emiss Forestry, and C (AFOLU)	sions due to Other Land Use	Non-AFOLU anthropogenic GHG emissions ⁶	Total net anthropogenic emissions (AFOLU + non-AFOLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	Natura land ir envin c	l respo to hun nduced ronme hange	nse of nan- I ntal	Net l atmos flux fr lar	and – sphere rom all nds
Panel 1: Contr	ibution of A	FOLU										
		FOLU	Agriculture	Total								
		А	В	C = A + B	D	E = C + D	F = (C/E) *100		G		A	+ G
co^2												
CO_2	Gt CO ₂ y ⁻¹	<mark>5.2</mark> ± 2.6	No data ¹¹	<mark>5.2</mark> ± 2.6	33.9 ± 1.8	39.1 ± 3.2	13%	-11.2	±	2.6	-6.0	± 3.7
CIL 3.8	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ± 109						
CH4	Gt CO ₂ e y ⁻¹	0.5 ± 0.2	4.0 ± 1.2	<mark>4.5</mark> ± 1.2	5.6 ± 2.8	10.1 ± 3.1	44%					
N 03.8	Mt N ₂ O y ⁻¹	0.3 ± 0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ± 2.7						
N ₂ O ^{3,6}	Gt CO ₂ e y ⁻¹	0.09 ± 0.03	<mark>2.2</mark> ± 0.7	<mark>2.3</mark> ± 0.7	0.5 ± 0.3	2.8 ± 0.7	81%					
Total (GHG)	Gt CO ₂ e y ⁻¹	5.8±2.6	6.2 ± 1.4	12.0±2.9	40.0 ± 3.4	52.0 ± 4.5	23%					

				Dire	ect Anthropoger	ic				Indirect	t	
Gas	Units	Net anthro Agriculture, F	opogenic emiss Forestry, and O (AFOLU)	ions due to ther Land Use	Non-AFOLU anthropogenic GHG emissions ⁶	Total net anthropogenic emissions (AFOLU + non-AFOLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	Natura land ir envi c	l respo to hun nduced ronme hange ⁷	nse of nan- I ntal	Net l atmos flux fr lar	and – sphere om all nds
Panel 1: Contr	ibution of A	FOLU										
		FOLU	Agriculture	Total								
		А	В	C = A + B	D	E = C + D	F = (C/E) *100		G		A	+ G
²												
CO ₂ -	Gt CO₂ y⁻¹	<mark>5.2</mark> ± 2.6	No data ¹¹	<mark>5.2</mark> ± 2.6	33.9 ± 1.8	<mark>39.1</mark> ± 3.2	13%	-11.2	±	2.6	-6.0	± 3.7
CU 38	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ± 109						
CH ₄ 5,5	Gt CO₂e y⁻¹	0.5 ± 0.2	<mark>4.0</mark> ± 1.2	<mark>4.5</mark> ± 1.2	5.6 ± 2.8	10.1 ± 3.1	44%					
N 038	Mt N ₂ O y ⁻¹	0.3 ± 0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ± 2.7						
N ₂ U ^{3/2}	Gt CO₂e y⁻¹	0.09 ± 0.03	<mark>2.2</mark> ± 0.7	<mark>2.3</mark> ± 0.7	0.5 ± 0.3	2.8 ± 0.7	81%					
Total (GHG)	Gt CO ₂ e y ⁻¹	5.8±2.6	6.2 ± 1.4	<mark>12.0</mark> ± 2.9	40.0 ± 3.4	<mark>52.0</mark> ± 4.5	23%					

				Dire	ect Anthropogen	iic		Natural resp land to hu induce environm chang G		Indirec	t	
Gas	Units	Net anthro Agriculture, F	opogenic emiss Forestry, and O (AFOLU)	ions due to ther Land Use	Non-AFOLU anthropogenic GHG emissions ⁶	Total net anthropogenic emissions (AFOLU + non-AFOLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	Natural land t in envir ch	respo o hum duced onmei iange ⁷	nse of nan- ntal	Net la atmos flux fro lan	and – phere om all ds
Panel 1: Contr	ibution of A	FOLU										
		FOLU	Agriculture	Total								
		А	В	C = A + B	D	E = C + D	F = (C/E) *100		G		A +	G
co ²												
	Gt CO₂ y⁻¹	5.2 ± 2.6	No data ¹¹	5.2 ± 2.6	33.9 ± 1.8	39.1 ± 3.2	13%	<mark>-11.2</mark>	±	2.6	-6.0	± 3.7
CI 3.8	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ± 109						
CH ₄ -7	Gt CO ₂ e y ⁻¹	0.5 ± 0.2	4.0 ± 1.2	4.5 ± 1.2	5.6 ± 2.8	10.1 ± 3.1	44%					
N 03.8	Mt N ₂ O y ⁻¹	0.3 ± 0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ± 2.7						
N ₂ 0***	Gt CO ₂ e y ⁻¹	0.09 ± 0.03	2.2 ± 0.7	2.3 ± 0.7	0.5 ± 0.3	2.8 ± 0.7	81%					
Total (GHG)	Gt CO ₂ e y ⁻¹	5.8±2.6	6.2 ± 1.4	12.0 ± 2.9	40.0 ± 3.4	52.0 ± 4.5	23%					

Understanding the gross emissions and removals that underlie the net land emission

Agriculture is responsible for 44% of global methane emissions

Agriculture is responsible for 81% of nitrous oxide emissions

Response Options

- Many land-related responses that contribute to climate change adaptation and mitigation also enhance food security.
- There are limits to the deployment of landbased mitigation measures such as bioenergy crops or afforestation. Use at large scale increases food security risks and sustainable development.
- Avoiding, reducing and reversing desertification would enhance soil fertility, increase carbon storage in soils and biomass, while **benefitting** agricultural productivity and food security.

climate

TAL PANEL ON

N_2O response to fertilizer is not linear. Solutions can be found in efficient nutrient management.

Response options

- Land challenges and response options vary based on region and context.
- •Some options have benefits for all land-climate challenges.
- •Many response options can be **applied without competing for available land;** Some **greatly increase competition for land**.
- •Bioenergy and BECCS are scale dependant, but they have a large mitigation potential.
- •Monoculture bioenergy crops can result in land competition and have adverse effects for food, land degradation, biodiversity and water scarcity.

Interlinkages

- Some response options have co-benefits or are more effective when paired. Others may conflict.
 Some response options are less feasible than others.
- •Coordinated action is required to enable responses.
- •Delayed action will mean more of a need to respond to land challenges but less potential for land-based responses (due to climate change and other pressures).

•Early action has challenges related to technology, upscaling and barriers.

Risk Management

- •Global temperature increases and its impacts on land results in **compound risks** to food systems, human and ecosystem health, livelihoods, the viability of infrastructure, and the value of land.
- •Risks related to land degradation, desertification and food security increase with temperature and can reverse development gains.
- •Delaying mitigation in other sectors and shifting the burden to the land sector, increases risks, including adverse effects on food security & ecosystem services.

The Big Picture

- •The potential for mitigating climate can only be realised if **agricultural emissions** are **included in mainstream climate policy**.
- •Acting early will avert or minimise risks, reduce losses and generate returns on investment.
- •Measuring progress towards goals is important to decision-making, adaptive governance & policy success.
- •A **flexible**, **adaptive**, **iterative approach** is needed for the complexity of land and climate interactions and food security.

climate

NTAL PANEL ON

•

Response options based on land management Increased food productivity Agro-forestry Improved cropland management Improved livestock management Agricultural diversification		Mitigation	Adaptation	Desertification	Land Degradation	Food Security	Cost
lture	Increased food productivity	1 E -	м	L	M	н	
	Agro-forestry	м	M	М	М	L	0
	Improved cropland management	M	1		L	L	00
Iture	Improved livestock management	М	1	L	<u>1</u>	L	000
Agricu	Agricultural diversification	L	<u>.</u>	L	M	L	0
	Improved grazing land management	м	<i>L</i>	L	1	L	
	Integrated water management	L	14	L	L	L	00
	Reduced grassland conversion to cropland	L		L	L	- 4	0
ests	Forest management	M.		L	L.	L	00
Fore	Reduced deforestation and forest degradation	H	. L	Ĺ	L	L	00
	Increased soil organic carbon content	H	b	M	М	L	00
ils	Reduced soil erosion	* L	- L	М	M.	(L)	
Sc	Reduced soil salinization			L		L	
	Reduced soil compaction		1		L	4	0
s	Fire management	м	м	M	М	4	0
stem	Reduced landslides and natural hazards	L	L.	L	(4.	
cosy	Reduced pollution including acidification	+> M	м	L	4	L	

Response options based on value chain management

P	Reduced post-harvest losses	H	М	L	L	Н	
Deman	Dietary change	Н		L	H.	(H)	$\left[-\right]$
	Reduced food waste (consumer or retailer)	H		Ł	ј — М.	М	
Supply	Sustainable sourcing		7 .1 2		L	1	
	Improved food processing and retailing	1	(u)				
	Improved energy use in food systems	L	Ľ	· · · · · · · · · · · · · · · · · · ·		\mathcal{I}_{c}	

Response options based on risk management

Risk	Livelihood diversification		L		L]
	Management of urban sprawl		1	L	М	4	—
	Risk sharing instruments	←→ L	L		++ L	L	00

INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

Climate Change and Land

An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

Summary for Policymakers

FOR MORE INFORMATION:

Website: http://ipcc.ch IPCC Secretariat: ipcc-sec@wmo.int IPCC Press Office: ipcc-media@wmo.int WG III TSU: tsu@ipcc-wg3.ac.uk

PRESENTER NAME

Affiliation Email address Social media handle

INTERGOVERNMENTAL PANEL ON Climate change

WGI

<WG II