Differences in land CO₂ fluxes between global models and GHG inventories: implications for the Global Stocktake

Giacomo Grassi (JRC)

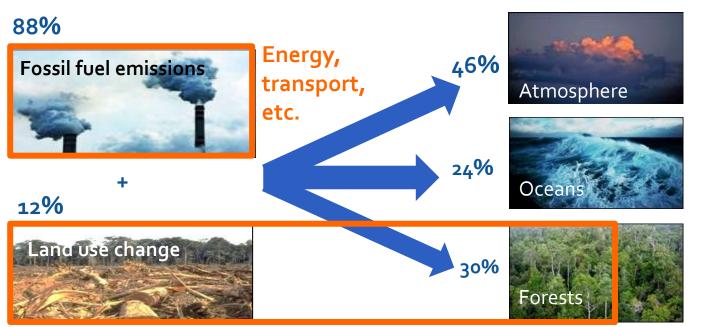
3

Detlef Van Vuuren (PBL), Elke Stehfest (PBL), Simone Rossi (JRC), A. Cescatti (JRC), J. House (Bristol Univ), A. Popp (PIK), J. Rogelj (IIASA)

COP25, IPCC SRCCL, 3rd December 2019

European Commission Can you tell me where I am? We're lost.

You are at Latitude 50 North and Longitude 4 East, at 100 m above sea level.


You must be a scientist. I asked you a simple question, you gave me too complex information and I'm still lost.

> And you must be a policymaker. I gave you an accurate answer, but you don't understand ...

> > Modified from - Creating common purpose: the integration of science and policy in Canada's Poblic Service, Canadian Centre for Management Development, 2002

The Global Carbon Budget

(average 2007-2016 from Global Carbon Project 2017)

The forest sink is complex to measure and only partly anthropogenic

Land Use, Land-Use Change and Forestry (LULUCF)

Land-related Co₂ flux categories

Global models (IPCC Reports)

Land-use change

(Bookkeeping, IAMs, DGVMs)

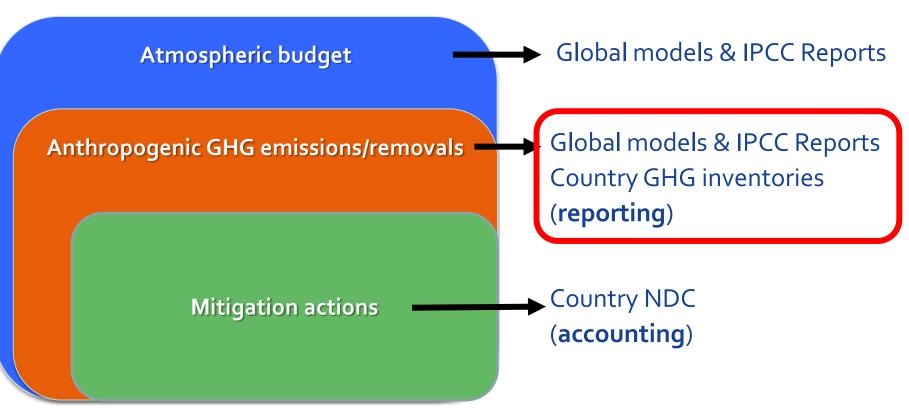
Anthropogenic CO₂ flux from landuse change, regrowth, some other form of management

Land sink (DGVMs)

Non-anthropogenic CO₂ flux, associated to the response of land to human-induced environmental changes (e.g., increasing atmospheric CO₂, nitrogen deposition, climate change)

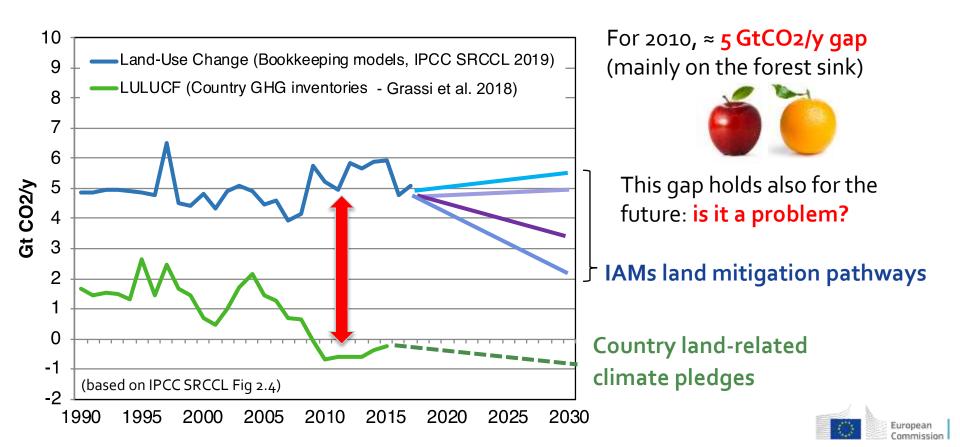
comparable

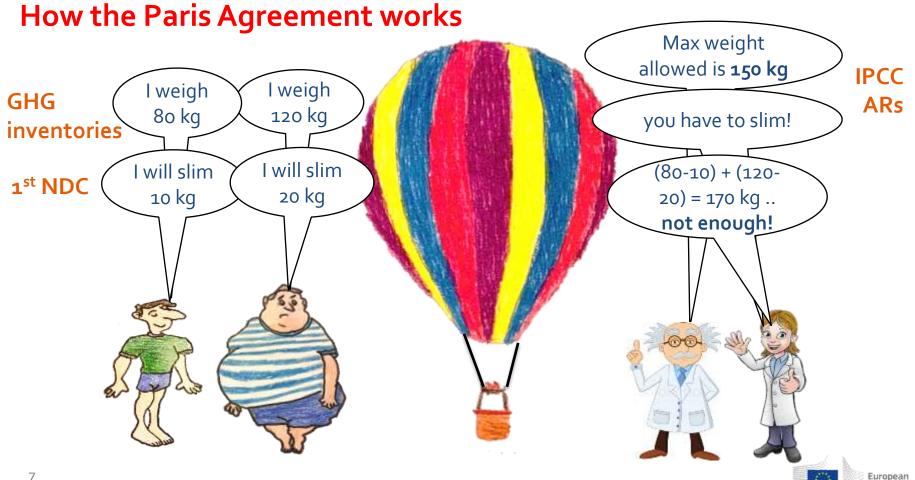
?


Country GHG inventories

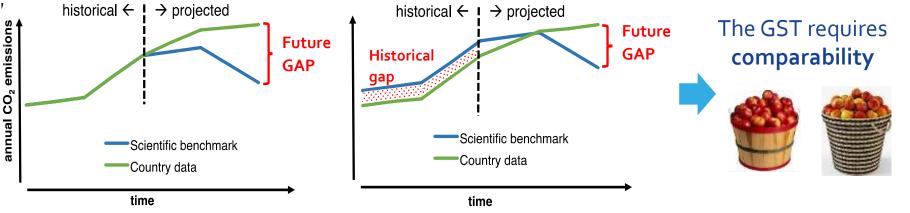
Land use, Land-use change and Forestry (LULUCF)

"Managed land" adopted as a pragmatic proxy for anthropogenic CO2 fluxes (IPCC 2006 Guidelines) → GHG inventories <u>REPORT</u> net emissions for managed land ("what the atmosphere sees").

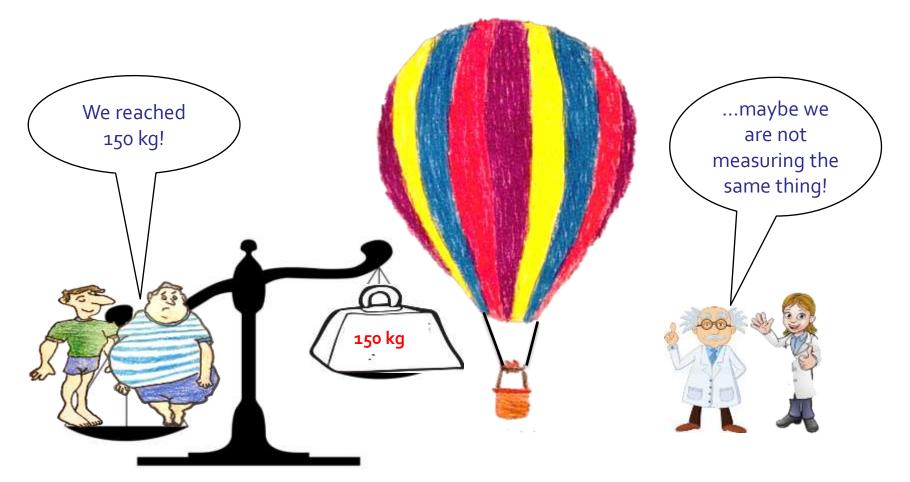

Then, when **ACCOUNTING** the LULUCF contribution toward countries' targets (NDC), special accounting rules may be used to filter the reporting and reflect better the impact of mitigation actions.



Global anthropogenic land CO2 fluxes: models vs. countries

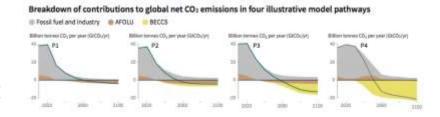


Commission


The Global Stocktake (GST) will assess (from 2023, every 5 yrs) the countries' collective progress towards the < 2°C target "in the light of the best available science".

Inputs to the GST:a) Aggregated countries' GHG datab) IPCC AR6 and other scientific data

Possible causes of the gap between global model and countries


- Coarse & incomplete representation of land-use change / management in global models (Pongraz et al. 2018) → impact difficult to quantify
- 2) Inaccurate & incomplete estimation of land CO₂ flux in **country GHG inventories**, especially in developing countries (Grassi et al. 2017) \rightarrow *difficult to quantify*
- 3) Conceptual differences in estimating «anthropogenic» land CO2 sink, which make global models and countries hardly comparable → >3 GtCO2/y (Grassi et al. 2018).

While in the long-term improvements are expected in both models and countries, the **Global Stocktake in 2023** requires **quick fixes** to allow **comparing country pledges with IAMs' mitigation pathways**.

These differences are reflected also in the SPMs of IPCC SR1.5 and SR CCL:

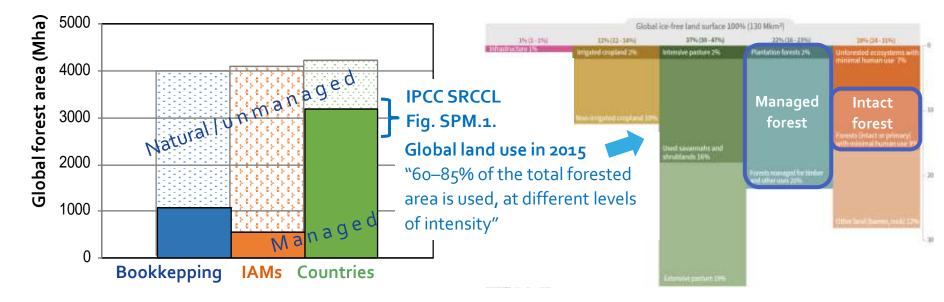
İρCC Summary for Policymakers GLOBAL WARMING OF 1.5 °C AFOLU estimates reported here are not necessarily comparable with countries' estimates.

IPCC Climate Change and Land (Summary for Policymakers)

A.3.3. Global models and national GHG inventories use different methods to estimate anthropogenic CO₂ emissions and removals for the land sector. Both produce estimates that are in close agreement for land-use change involving forest (e.g., deforestation, afforestation), and differ for managed forest. Global models consider as managed forest those lands that were subject to harvest whereas, consistent with IPCC guidelines, national GHG inventories define managed forest more broadly. On this larger area, inventories can also consider the response of land to human-induced environmental changes as anthropogenic, while the global model approach treats this response as part of the non-anthropogenic sink. For illustration, from 2005 to 2014, the sum of the national GHG inventories net emission estimates is 0.1±1.0 GtCO2yr-1, while the mean of two global bookkeeping models is 5.1±2.6 GtCO2yr-1 (likely range). Consideration of differences in methods can enhance understanding of land sector net emission estimates and <u>the</u>ir applications.

Global models and countries use **different approaches to estimate anthropogenic** land CO₂ fluxes, due to **differences in**:

a) attributing the impact of human-induced environmental changesb) forest area considered managed


a) Differences in attributing the impact of human-induced environmental changes (IPCC SRCCL Fig. 2.6)

		Bookkeeping/IAMs Anthropogenic "Land-use change"		DGVMs Natural " <i>Land Sink"</i>		Country inventories Anthropogenic "LULUCF"	
		Managed	Unman.	Managed	Unman.	Managed	Unman.
Direct human induced effects	Land use change Management (e.g. harvest)	~				 ✓ 	
Indirect human induced effects	Climate change, atm. CO2 increase, N deposition etc.			~	~	 ✓ 	
Natural effects	Interannual variability Natural disturbances			~	~	~	
	Averages* for 2005-2014 \rightarrow	≈ 5 GtCO2/y		≈ -11 GtCO2/y		≈ o GtCO2/y	

Most countries include the impact of "indirect effects" (environmental change)

*Bookkeeping and DGVMs: Le Quere et al., 2018; IAMs: average for 2010 of IAM runs in SSP Database. Country GHG Inventories: Grassi et al., 2018

b) Differences in forest area considered managed

- Total forest area similar (around 4000 Mha)
- 'Managed' area in Bookkeeping and IAMs (i.e. subject to harvest) much smaller than Countries 'managed' area (where human practices are applied to perform production, ecological or social functions)

Different scopes, two communities → different approaches to identify anthropogenic flux. Countries include the impact of "**environmental change**" on a larger "**managed**" area.

How to reconcile these differences for the Global Stocktake?

Changing the countries' approach is difficult. Models' results may be post-processed \rightarrow approach successfully applied to historical period:

Reconciling global-model estimates and country reporting of anthropogenic forest CO₂ sinks

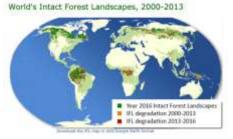
Giacomo Grassi@1*, Jo House@?, Werner A. Kurz@?, Alessandro Cescatti', Richard A. Houghton@4,

And for the future (IAMs scenarios?)

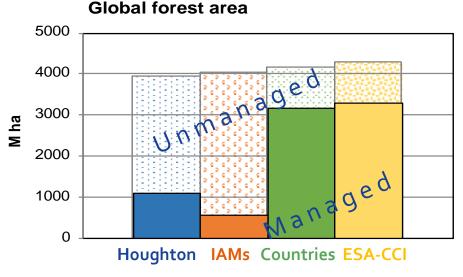
a) Differences in attributing the impact of human-induced environmental changes

Possible new table to "translate" global model estimates:

CURRENT Land CO2 flux categories	NEW Land CO ₂ flux categories			
Land use (Bookkeeping/IAMs): CO2 from direct effects in managed land	a) CO2 from direct effects in managed land	consistency with previous estimates		
Natural land sink (DGVMs): response of land to human-induced environmental changes (indirect + natural	b) CO ₂ from indirect + natural effects in managed land	estimates		
effects), in both managed and unmanaged land	c) CO2 from indirect + natural effects in unmanaged lands			
	e) Natural "Land sink": b + c	consistency with		
	d) <u>LULUCF</u> in country GHGIs: a + b -	country GHG inventories		

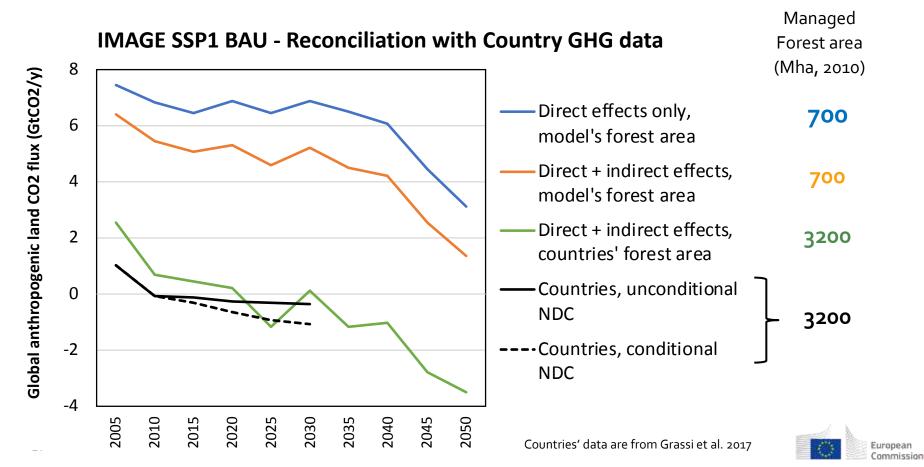

(Grassi et al., in preparation)

b) Differences in managed forest area


 \rightarrow We need a map of managed areas close to countries' approach

ESA-CCI: 300 m global land cover map 1992-2015 by European Space Agency's Climate Change Initiative

Intact forests (Popatov et al.)



ESA-CCI (total forest classes) minus Intact forests (≈unmanaged) = `managed' forest

Illustrative results for IMAGE, SSP1- baseline

Conclusions

- Large gap in land CO₂ fluxes between global models and countries, mostly on forests.
- Gap mainly due to a **conceptual difference in estimating "anthropogenic" CO2 sink:** countries include the impact of "**environmental change**" on a larger "**managed**" area.
- Reconciling these differences is needed to assess country collective progress towards meeting modelled mitigation pathways under the Global Stocktake.
- To this aim, preliminary results of an ex-post processing of IAMs results are promising.
- Next steps: use data from all IAMs

Thank you!