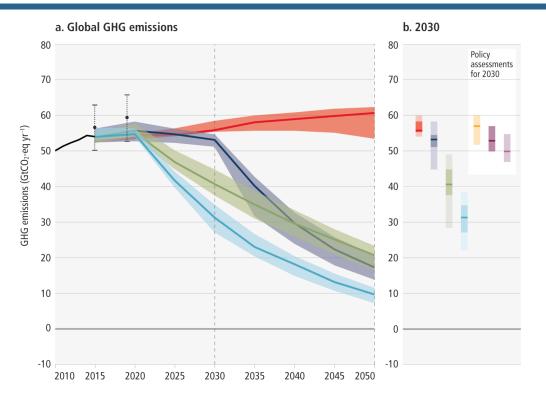
Need for mitigation, transformative action and future scenarios

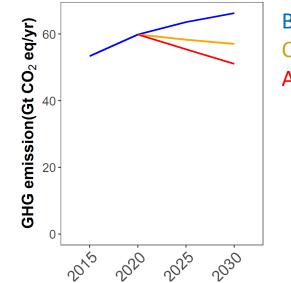
Shinichiro Fujimori

Kyoto University, Japan

28th, April, 2023


Outreach event on the IPCC Sixth Assessment Report key findings

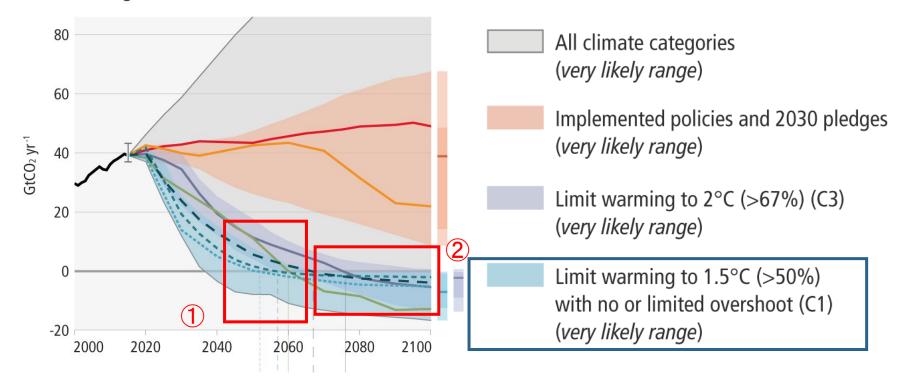
and their relevance to Asia @ Bangkok


Near-term requirement and current pledges

- Emissions under current pledges (before Glasgow) is much higher than 1.5 °C pathways
- Pledges after Glasgow were not assessed in AR6, but probably still insufficient to 1.5 °C
- Strengthening current system transformation

Modelled pathways:

- Trend from implemented policies
- Limit warming to 2°C (>67%) or return warming to
- 1.5°C (>50%) after a high overshoot, NDCs until 2030
- Limit warming to 2°C (>67%)
- Limit warming to 1.5°C (>50%) with no or limited overshoot
- However, Past GHG emissions and uncertainty for 2015 and 2019 (dot indicates the median)

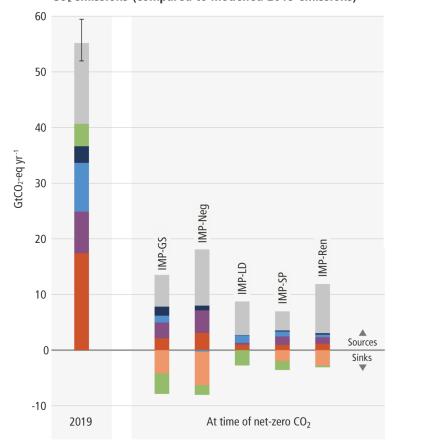

Baseline Current pledge After Glasgow

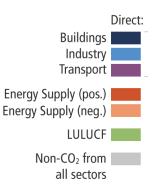
Tsutsui, Fujimori *et al.* (Under prep.)

Global GHG emissions assessing Glasgow pledges

Requirement for long-term emissions reduction

b. Net global CO₂ emissions


- 1 Net-zero emissions around mid-century
 - ightarrow Consistent with current many national carbon neutral goals
- 2 Net carbon dioxide removal (CDRs) would be needed in the latter half of century
 - \rightarrow who is going to take? How much?



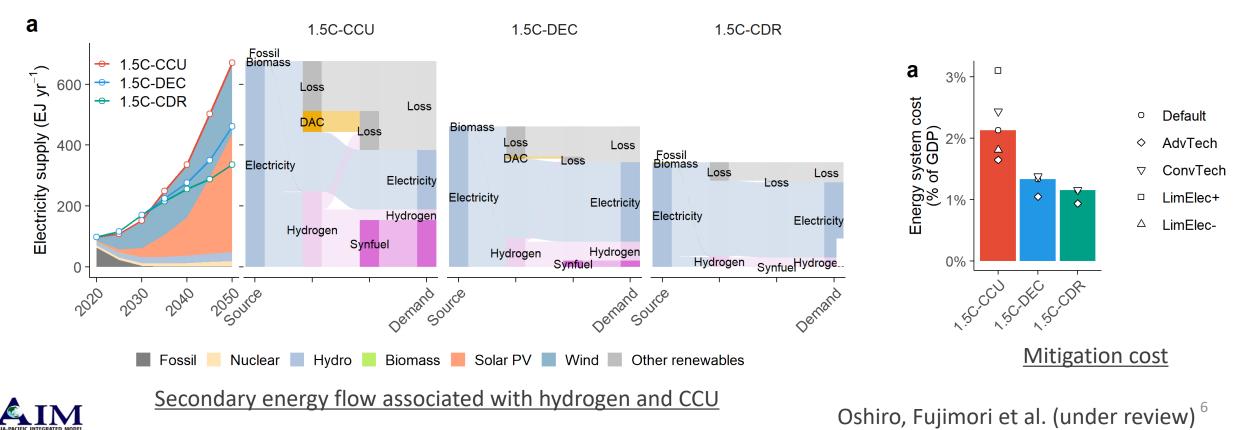
Multiple options in achieving net zero emissions

- Residual emissions varied among pathways
- Key questions
 - ✓ How to deal with the hard-to-decarbonize sectors
 - ✓ How to and how much we would rely on CDRs

e. Sectoral GHG emissions at the time of net-zero CO₂ emissions (compared to modelled 2019 emissions)

Sixth Assessment Report WORKING GROUP III – MITIGATION OF CLIMATE CHANGE

Energy


- major transitions are required to limit global warming
 - າບ ອະນັ∩ກລາປະນາຈາການເຮັບໄດ້ກາງບໍ່ເກັບນີ້ carbon capture and storage
 - low- or no-carbon energy systems
 - widespread electrification and improved energy efficiency
 - alternative fuels: e.g. hydrogen and sustainable biofuels

[Portland General Electric CC BY-ND 2.0, Harry Cunningham/Unsplash. Stéphane Bellerose/UNDP in

Mauritius and Seychelles CC BY-NC 2.0, IMF Photo/Li: Marie David, Tamara Merino CC BY-NC-ND 2.

An example of transformation using AIM model

- Three alternative pathways to realize net-zero emissions
 - Carbon Capture and Utilization (CCU; supply side), demand side measures, and CDR
- CCU is mainly used for synthetic fuel production. CCU moderates the demand side drastic changes
- While cost would be an obstacle, CCU-based measures would be an option.

The AIM (Asia-Pacific Integrated Model) as International Collaborative Network

PIK, PNNL, CIRED HES

CMCC, IIASA, PBL,

JAPAN

- National Institute for Environmental Studies (NIES) Kyoto University CHINA
- Energy Research Institute (ERI) Peking University (PU)

I<u>NDIA</u>

- Indian Institute of Management (IIM), Ahmedabad
- Indian Institute of Management (IIM) Lucknow

<u>KOREA</u>

- Seoul National University (SNU) Korea Environment Institute (KEI) THAILAND
- Asian Institute of Technology (AIT) Thammasat University
- MALAYSIA
- University Putra Malaysia (UPM) <u>VIETNAM</u>
- Ho-Chiming University
- INDONESIA Bandung University

Photo from 21st AIM international workshop held in 2015